2020 IEEE 7th International Conference on Engineering Technologies and Applied Sciences (ICETAS)

A Hyperledger Fabric Based Organizational
Decentralized Access Control Solution

Sangat Das
Pune Institute of Computer
Technology, Pune, India
sangatdas5 @gmail.com

Abstract—Currently, various organizations rely on third-party
access control and resource management applications or develop
their centralized application for resource management. Consider-
ing the pitfalls of present centralized applications, the proposed
solution presents a decentralized approach towards organiza-
tional resource management and access control provisioning
within or across organizational units. The research attempts
to provide solutions for problems and risks associated with a
centralized resource and access control management systems.
This approach leverages the advantages of the permissioned
Blockchain framework - Hyperledger Fabric and peer-to-peer
network. The proposed solution also provides Single Sign-On
authentication mechanism (SSO) for various organizational re-
sources. Using the approach presented in the paper we can
develop an efficient way of Team management with which we
can achieve a higher degree of autonomy of subdivisions within
an organization.

I. INTRODUCTION

When it comes to giving access to employees in various
organizations, the said organizations rely on third party access
control applications or develop their own application for the
same. But, even though these applications are claimed to be
very secure, they use centralized servers to maintain access
records, access keys, etc. This creates a single point of failure
and vulnerability for malicious hackers to get unauthorized
access to confidential data or perform Denial of Service(DoS)
attacks [1].

We believe using decentralized applications for such an
access control mechanism makes the system more secure from
the perspective of a single point of failure and attack. By using
blockchain technology [2], which is also base technology for
Bitcoin Cryptocurrency [3], we not only can ensure confiden-
tiality of organizational data but also can increase availability
for authenticated users and eliminate single point of failure by
introducing multiple nodes in a network.

Hyperledger Fabric is a blockchain platform to create a
private and permissioned ledger [4]. The consensus in hyper-
ledger fabric consists of three phases namely Endorsement,
Ordering, and Validation, which can be used to develop appli-
cations for the above-described scenarios. Hyperledger Fabric
also has provisions to define policies for access control on
various resources like chain code. The concept of “Channels”
in hyperledger fabric allows us to create logical divisions
within the organization which enables the creation of multiple

978-0-7381-0504-8/20/$31.00 (©2020 IEEE

Chinmay Saraf
Pune Institute of Computer
Technology, Pune, India
chinmay.saraf98 @ gmail.com

Devashish Pradeep Khairnar
Pune Institute of Computer
Technology, Pune, India
khairnardevashish @ gmail.com

subunits within the organization with each subunit having
access only to their own transactions [5].

In the presented approach, we are utilizing the above-
mentioned features of the hyperledger fabric framework to
create a decentralized access control mechanism that can be
deployed as a solution by an organization on its own infras-
tructure. In this approach, an organization can create its own
verified peers and form a private permissioned network that
can be trusted to provide access control to various resources
owned by the organization.

II. RELATED WORK

Similar work in this field has been developed by Ellcrys [6],
where researchers have proposed using a public blockchain
network to manage open source repositories. Instead of using
traditional consensus algorithms like Proof-of-Work (PoW)
and Proof-of-Stake (PoS), they have resorted to using a hybrid
approach, Proof-of-Activity [7] as a consensus model. In their
work, they have addressed the need for a decentralized way to
control open-source projects and have discussed a way through
which collaborators can be rewarded in the form of their own
native coins (Ell). They have also modeled their Transaction
Endorser similar to the Hyperledger endorser concept which
enables them to use general-purpose languages for writing
smart contracts to solve the problem of non-determinism.

Another group of researchers in their paper [8], have ad-
dressed the need for a decentralized system to verify contri-
butions to open source projects and maintain secure versions
of software available to the general public. This paper has
proposed how blockchain technology can be used to maintain
secure source code binaries protected from attacks that can
destroy repositories, divert updates, or inject malicious code
snippets.

To implement flexible, diverse, and dynamic access con-
trol, this paper [9] introduced attribute-based access control
(ABAC) into the blockchain. The access control logic of
ABAC engines determines who should have access to what
resources under what circumstances by taking what actions
and is useful for an open environment, such as blockchain. The
resource sharing platform in the paper can support flexible and
diverse permission management, as well as a verifiable and
transparent access process that integrates Transaction Based
Access Control(TBAC) with standard ABAC and blockchain.

Application

App Login Rez‘ﬁgz?f\fim Eg. Bitbucket, AWS
Interface Access Token Consaole, Enterprise tools

Hyperiedger Application API
Application specific P 9 s

API calls

j Smart Contracts
Ordering Service

Application specific
API Response

Request with

Usemame, Password TOL&“

Verification
Reiuesl

Response with

TOIEI’I

Verification
Su cTess

Access Token

Hyperledger Auth API

Smart Contracts

Peer Nodes

Ordering Service

U=
ORORDO

Blockchain Ledger

Fig. 1: Application Diagram

Four different types of transactions are presented to describe
the TBAC access control procedure and provide the instances
of these transactions corresponding to subject registration, ob-
ject escrowing and publication, access request, and grant. The
guarantee authorization relationship among these transactions
is assured by Bitcoin-type cryptographic scripts.

Similar work is proposed in paper [10] where the right to
access a resource can be easily transferred from a user to
another through a blockchain transaction created by the last
right owner, without the intervention of the resource owner;
the right is initially defined by the resource owner through
a transaction, and all the other transactions representing the
right transfers are published on the blockchain. The advantage
of this solution is that any user can inspect transactions at
any time in order to check who currently holds the rights to
perform a given action on a given resource. Consequently, a
user who had its access request denied can check whether the
entity in charge of verifying the existence of the required right
actually made the right decision.

A group of researchers has done research on the Version
Control System using the Ethereum Blockchain platform and
IPFS which is a distributed file system [11]. Their research pri-
marily focuses on the elimination of third-party authenticators
between developers and approvers. The proposed application
utilizes the main features of the Blockchain of decentralization
and security. The version control system is based on the
consent of approvers which involves sharing of documents
between developers and approvers using the hash of the
document stored on the IPFS file system. The registration of
a new developer/approver is based on the consent of two-third
of all registered developers and approvers. All the transactions
are handled by smart contracts.

In another research for decentralized scientific communities
collaboration [12], the solution for version control is pro-
posed using public blockchain. In this application, the use of
Blockchain to store commit hash is proposed. On storing the
commit hash on blockchain, it will be pushed to a centralized
repository management system like Git, Bitbucket, etc. The
approach mainly focuses on avoiding the authorship risk due to

centralized repositories. The application introduces Blockchain
before the commit is pushed to a centralized repository.

III. APPLICATION

In the proposed solution, a single point authentication for
multiple applications is provided with the help of a decen-
tralized application that is useful in achieving transparency,
security, and independence from third-party applications. As
shown in fig:1, when a user logs into the system, a unique
token is created after successful login by Hyperledger Auth
API which can be further used to access various applications.
In the authentication process, the proposed solution is using
Hyperledger based Auth API to authenticate the users and also
check their access to various organization owned resources.
Along with this, the solution also provides the provision to
keep track of API calls to any application and its associated
response with the help of Hyperledger Application API. Using
this functionality, the activity associated with an application
can be stored in the form of logs on ledger blockchain.
Since data stored on the blockchain is immutable, it won’t
be possible for any malicious user to change the logs to hide
his/her activity.

1V. DESIGN
A. Overview

In the proposed system, dedicated channels are created
for every Team/division within the organization. In the
application, Teams are considered as “Organizations”
in hyperledger fabric [5] with each Team compris-
ing various Team Units which can be thought of as
“Organizational Units (OUs)” in hyperledger fab-
ric. Also, just like in the real world organization structure
[13] where the Human Resource department hires and on-
boards employees in organization, similarly HRCA in the
application will provide identity to various participants in the
network. HRCA is a “Certification Authority” in
hyperledger fabric which will be owned by the organization.
The manager of a Team has administrative authority i.e.
admin role in hyperledger fabric. Only the “Admin” role has

permissions to add/remove users/Team members with the help
of MSP (Membership Service Provider).

B. System Architecture

1) Components:

e Channel: A Hyperledger Fabric channel is a private
“subnet” of communication between two or more specific
network members, to conduct private and confidential
transactions. In the proposed application, each Team
will be communicating over a dedicated channel. The
configuration of the channel can be updated by Admin
nodes.

e Team: Team in the proposed application behaves like an
organization of hyperledger fabric.

e Team Units: Team Units in the proposed application
behaves like organizational units of hyperledger fabric.
These organizational units are part of an organization.

e Ordering Service: Orderer node is responsible for
ordering transactions executed within the network. All
orderer nodes together form an ordering service.

e HRCA: It is a certification authority owned by the organi-
zation used to issue identities by implementing a public
key infrastructure [14] that can be used to prove identity.

o MSP: The MSP is the mechanism that allows that identity
to be trusted and recognized by the rest of the net-
work without ever revealing the member’s private key.
MSP uses certificates generated by Certificate Authorities
which represent identities, to allow the user to be part of
network permissioned identities.

e Peer Node: Peers are a fundamental element of the
network which host ledgers and smart contracts. A peer
can be part of an organizational unit or an organization.

e Admin Node: Admin node is responsible for updating
channel configuration, adding or removing members in a
channel.(Please refer fig: 2)

2) Participants:

e OrgAdmin: This participant will have the right to create
new channels and also can give rights to other participants
to do the same.

e Team Manager: These participants have access to ad-
min nodes and have the right of adding or removing
members in the channel.

e Team Members: These participants are part of Team
Units and have access to peer nodes and have associated
policies for access control.

o HRs: These participants give identity certificates to all
participants of the network.

3) Workflow: This section explains workflow of the pro-
posed application: The application has an interface for HRCA
which will allow HRs to issue identity certificates to new
employees. After an employee gets an identity certificate, a
Team Manager will provide employee membership with the
help of the channel MSP of his/her Team through an interface
created for Team Managers. Here, each Team will have a
dedicated Channel associated with it and there will be many

Team Units like Developers, Testers, Database managers, etc
associated with each Team. Each Team unit will have a number
of peers with multiple users. The Team Manager will add
users/employees in their respective Team Units. Also, there
can be access control policy defined for each peer as per their
access rights to company resources. In order to achieve this,
the application will be using the CouchDB database to store
user-specific access information. Please refer fig: 3

After a user is assigned to a Team unit, he/she can perform
operations on Team owned applications. But, these operations
must follow policy specified. For example, users won’t be able
to perform a write operation on a resource for which he/she
is not allowed to, as per policy defined. These policies can
be defined for all Team resources through the Team Manager
interface.

In order to achieve single point authentication, the applica-
tion provides Hyperledger based Auth APIs. In this mecha-
nism, when the user first logs in to the system, a JWT token
is created for the session and stored in the state database
(CouchDB). This replicates Single Sign-On [15] mechanism.
This token is returned to the client login interface which
will then forward it to the third party application (Bitbucket,
AWS Console, etc.), which will in return verify from the auth
application whether the token is valid or not. This will ensure
that only valid users are able to access organizational resources
(in this case organization accounts) and since the tokens have
an expiration time associated with it, even if a malicious user
gets hold of a token, he/she won’t be able to cause much
damage to the integrity of the system.

The application also gives provision to store logs associated
with the activity of users on company-owned applications. In
order to implement this functionality, the application uses a
hyperledger based chain code API to store logs in the state
database.

C. Chaincode Flow

fig: 4 shows the execution of commit requests by users in
Git with the execution of chaincode. In the proposed solution,
any API calls to company-owned applications will be done
through the execution of chaincode. When a peer requests for
commit request by calling chaincode, before executing commit
operation, access of the user to perform a write operation
on git is checked from state database CouchDB. The request
to commit is granted only if the user has access to do the
same else the request is rejected. Similarly, for any company-
owned application, the same validation can be performed
before executing the API call. If a user has the grant to perform
API calls (here commit request), then the logs of the request
are stored in the state database.

D. Scalability

The application is built using a hyperledger fabric platform
[5] that can be deployed on the cloud and local machines.
However, the application can be scaled. Hyperledger Fabric
does not use the Proof of Work algorithm and also the mining
process is not involved. This makes the application faster and

API
Gateway

API
Gateway

Authenticati Application Layer
L

J Client Application /— Team Units ﬁ

A

L

£ —
Consumed By 1§ =) Consumed By} ‘ v \
(‘ TU | TU
heer - Peer S Execute Contract: < 1 ()
Node Node Node (ecute Lontracts . Users, : =0 /
f J

Organization Channel MSPs . Added By Achlm! By ’t
. l ' ' Execute Contracts
\ v L — N
Team : — . :) TU TU
Ma Aty —> | Channel A for Team A ' oy
[for Team Node ! ’ TU
L | 1
LA | L] — ' 1
R it sttt o R 1)
Team e =1 e~ :) 1 ‘ w |
Mar Adfnin | Channel B for Team B o Ordering |
for Team Node Service | |
B G © TU
Manager | Admin e Channel C for Team C Authenticated Users
ffor Team| Node | A -

Key:

>
@
E
0E

Chaincode installed on Node

Ledger maintained on Node

Fig. 2: System Architecture Diagram

Chaincode

> Peer

Add User and its
Default Access
Invokes Infarmation to CouchDB

Chaincade

Repgister User on

Fabric SDK

Check if User
exists on Peer

Team %
Manager
Update User Access

Update Team Member Information
Access Interface

" Invokes i
e oot

Fig. 3: Team Manager Action Flow Diagram

Adding Team
Member Interface

CouchDB
Datasource

more scalable [16]. There is no limit on adding the number
of peers in the network.

The size of the network will be directly proportional to the
size of the organization. Furthermore, we are dividing the peers
to be part of separate channels, which reduces the load and
network complexity of a single channel. Since for a particular
peer we can have multiple users with different roles there is
no need to increase numbers of peers to match the number of
users. In this way, the application is highly scalable.

E. Hyperledger Transaction Flow

Following are the steps involved in hyperledger transaction
processing (Please refer fig: 5):

1Y)
2)

Reject Request

Access
Unavailable

Commit Request Check Access Commit Code to Git Create Commit Hash
(Calling Chaincode) (from couchDB) (Git AP call) and logs

Access
Available

Transaction

Store in CouchDB

Fig. 4: Chaincode Flow Diagram

Client application request a transaction.

SDK application generates a transaction proposal and
sends to endorsing peers.

Endorsing peers verify:

a) The transaction proposed is well in form

b) Not submitted before

¢) Signature is valid

d) The client is authorized to perform the concerned
operation.

The transaction proposal inputs as argument are passed
to chaincode or smart contract and further to SDK
application.

The application verifies the signature and compares the
proposal responses to be same.

Application broadcast the transaction containing
read/write sets and signature to ordering service.
Ordering peers prepares the block and transmit it to all

8)

Request from Client ::

Fabric SDK

— Transaction Proposal

. S ——

'
]
'
I

Recieves
Transaction
Proposal .

Response,’ Ordering Service . Ordming |
voand
+ Packaging
Orderings Transactions:
Nodes + into Blocks |

Non-Endorsing Peer

\ .
~ - Committing Peers ~

Smart Contract/
L Verification against Endorsement policies——{ Chaincode

Transaction
Aborted

Database
update

L

|
Ledger

Database
_________/

Nodes

Fig. 5: Hyperledger Fabric Transaction Flow

the peers.
Each peer appends the block to the chain, and for each
valid transaction the write sets are committed to the
database.

F. Implementation

1y

2)

3)

4)

Peer Adding - HRCA only issues identity certificates to
a peer. But, to assign a team to the peer, the manager of
a team needs to onboard the peer to the team channel.
The Peer adding algorithm checks if the peer has a valid
identity certificate issued by HRCA. If a new team has
to be created then orgAdmin creates a new channel and
adds an admin node that can govern the channel. A
Team Manager can be added to this admin node who
can further add other members of the team to channel.
If the channel already exists then the peer is added to the
channel by Team Manager. (Please refer algorithm:1)

Assign Access Rights - The application allows the team
manager to give access rights to an individual from the
team. The “Assign Access Rights” algorithm assigns
default access to a user if he/she is a new user. If the user
already exists then the manager can update the access
rights of the user. (Please refer algorithm:2)

Use Access Rights - A user needs to have access rights
to API else API request will be rejected. The algorithm
checks if a user is authenticated and has access to the
requested API call. If the user has access then the
API request is processed else rejected. (Please refer
algorithm:3)

Activity Logs Sharing - The application stores the ac-
tivity logs of API calls by a user. The algorithm for
this stores the successful API call response, timestamp,
userInfo, output into CouchDB. In case of failed API call
it stores failure status, timestamp of API call, userInfo.
(Please refer algorithm:4)

Algorithm 1 Peer Adding

1:
2
3
4
S:
6
7
8
9

10:
11:

procedure ADDPEER(fabricSDK)
HRC A gives Identity Certificate to Peer
if new channel creation request then
OrgAdmin creates new channel
OrgAdmin adds new peer
OrgAdmin assign role of Team Manager to a peer
end if
if peer request to add in new channel then
Team — Manager adds peer to new channel
end if
end procedure

Algorithm 2 Assign Access Rights

1:
2
3
4:
5:
6
7
8

9:
10:

procedure ASSIGNACCESS(user, access — rights)
if user is new then
user.access — rights < de fault.access —rights
couchDB < user.access — rights
end if
if User already registered then
user.access — rights < access — rights
couchD B < user.access — rights
end if
end procedure

Algorithm 3 Use Access Rights

1:
2:

(98]

procedure USEACCESSRIGHTS(user, api-request)
user requests for api-request to an application
if user.authenticated N user.hasAccessToApiCall
then
api-request processed
else
api-request rejected
end if
end procedure

Algorithm 4 Activity Logs Storing

1: procedure STOREACTIVITYLOGS(user, res)
2 if API call succeeds then

3 OP.timeStamp <+ res.timestamp

4 OP.Body <+ res.body

5: OP.userInfo < res.userInfo

6 couchDB < OP

7 else

8 OP.timeStamp + res.timestamp

9 OP.failureStatus < res. failureStatus
10: OP.userInfo < res.userInfo

11: couchDB < OP

12: end if

13: end procedure

V. CONCLUSION AND FUTURE SCOPE

Considering present scenarios and pitfalls of centralized
systems for resource management, we have proposed a de-
centralized solution that uses the hyperledger fabric platform
which is based on blockchain technology. With the help of
the proposed solution, the organization will be able to manage
authentication and access control of company resources in a
feasible and secure way. Also, the solution provides immutable
storage of activity logs of various resources which enables an
organization to keep track of malicious activity which is useful
for the organization to perform security audits.

However, there is definitely the scope of improvement. The
application scope can be extended to open-source repositories
with the help of IPFS [17] i.e. distributed file system. Third-
party applications like Bitbucket, JIRA, Jenkins can be incor-
porated with the proposed application to store more details of
employee activities in the ledger database. Also, the scope can
be enhanced to include employees from vendor organizations
and their access controls as per an agreement signed between
the organization and the vendor. We are planning to append
these features in the coming future.

REFERENCES

[1] C. Inc. (2020). What is a denial-of-service (dos) attack?
[Online]. Available: https://www.cloudflare.com/.

[2] IBM. (2020). What is blockchain technology? [Online].
Available: https://www.ibm.com/.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” Manubot, Tech. Rep., 2018.

[4] C. Saraf and S. Sabadra, “Blockchain platforms: A com-
pendium,” in 2018 IEEE International Conference on
Innovative Research and Development (ICIRD), 1EEE,
2018, pp. 1-6.

[5] T. L. Foundation. (2020). A blockchain platform for the
enterprise — hyperledger-fabricdocs master documen-
tation, [Online]. Available: https://hyperledger- fabric.
readthedocs.io/en/release-2.0/.

[6] E. org. (2019). Ellerys technical white paper (vl),
[Online]. Available: https://github.com/ellcrys/papers.

(7]

(8]

(9]

[12]

I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof
of activity: Extending bitcoin’s proof of work via proof
of stake [extended abstract] y,” ACM SIGMETRICS Per-
formance Evaluation Review, vol. 42, no. 3, pp. 34-37,
2014.

K. Alhamed, M. C. Silaghi, I. Hussien, and Y. Yang,
“Security by decentralized certification of automatic-
updates for open source software controlled by vol-
unteers,” in Workshop on Decentralized Coordination,
2013.

Y. Zhu, Y. Qin, G. Gan, Y. Shuai, and W. C.-C. Chu,
“Tbac: Transaction-based access control on blockchain
for resource sharing with cryptographically decentral-
ized authorization,” in 2018 IEEE 42nd Annual Com-
puter Software and Applications Conference (COMP-
SAC), IEEE, vol. 1, 2018, pp. 535-544.

D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain
based access control,” in IFIP International Conference
on Distributed Applications and Interoperable Systems,
Springer, 2017, pp. 206-220.

N. Nizamuddin, K. Salah, M. A. Azad, J. Arshad, and
M. Rehman, “Decentralized document version control
using ethereum blockchain and ipfs,” Computers &
Electrical Engineering, vol. 76, pp. 183-197, 2019.

V. Lenko, N. Kunanets, V. Pasichnyk, and Y. Shcher-
byna, “Decentralized blockchain-based platform for col-
laboration in virtual scientific communities,” ECON-
TECHMOD: An International Quarterly Journal on
Economics of Technology and Modelling Processes,
vol. 8, 2019.

L. Learning. (2013). Common organizational structures,
[Online]. Available: https://courses.lumenlearning.com/.
C. Inc. (2020). How does public key encryption work?
— public key cryptography and ssl, [Online]. Available:
https://www.cloudflare.com/.

OneLogin. (2020). How does single sign-on work, [On-
line]. Available: https://www.onelogin.com/learn/how-
single-sign-on-works.

IBM. (2020). Does hyperledger fabric perform at scale?
[Online]. Available: https://www.ibm.com/.

I. team. (2020). Ipfs powers the distributed web, [On-
line]. Available: https://ipfs.io/.

